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Abstract

Solutions to linear controlled differential equations can be expressed in terms of
global iterated path integrals along the driving path. This collection of iterated integrals
encodes essentially all information about the underlying path. While upper bounds for
iterated path integrals are well known, lower bounds are much less understood, and
it is known only relatively recently that some types of asymptotics for the n-th order
iterated integral can be used to recover some intrinsic quantitative properties of the
path, such as the length for C1 paths.

In the present paper, we investigate the simplest type of rough paths (the rough path
analogue of line segments), and establish uniform upper and lower estimates for the tail
asymptotics of iterated integrals in terms of the local variation of the underlying path.
Our methodology, which we believe is new for this problem, involves developing paths
into complex semisimple Lie algebras and using the associated representation theory to
study spectral properties of Lie polynomials under the Lie algebraic development.
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1 Introduction

Controlled differential equations of the form

dYt =
d∑
i=1

Vi(Yt)dX
i
t (1.1)

where Vi : RN → RN , X : [0, T ] → Rd, Y : [0, T ] → RN , frequently appear in many
interesting problems in stochastic analysis and applications to stochastic modelling (cf. [4],
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[19], [26], [30] and the references therein). The most well known and fundamental example
is perhaps when Xt is a Brownian motion. The rough path theory initiated by Lyons [21]
and further developed by many authors (cf. [8], [13], [14]), identifies a wide class of “rough”
paths including Brownian motion for which the equation (1.1) is well defined. The theory
is analytically consistent with the classical viewpoint, in the sense that it is a continuous
extension of the Lebesgue-Stieltjes theory with respect to the rough path topology and
reduces to the classical setting when the underlying paths have finite lengths. Rough path
theory naturally motivates the study of analytic properties of solutions to (1.1) driven by
rough paths.

One particularly tractable class of examples is when the vector fields (Vi)16i6d are linear.
In this case, the solution at time t = T can be represented explicitly as

YT =
∞∑
n=0

d∑
i1,··· ,in=1

Vi1 · · ·Vin(Y0) ·
∫

0<t1<···<tn<T
dX i1

t1 · · · dX
in
tn .

In particular, YT depends on the driving path X through the collection of iterated coordinate
integrals

S(X) ,

{∫
0<t1<···<tn<T

dX i1
t1 · · · dX

in
tn : n > 1, 1 6 i1, · · · , in 6 d

}
.

For algebraic reasons, it is useful to think of this collection as a single element of the infinite
tensor algebra T ((Rd)) ,

∏∞
n=0(Rd)⊗n, more intrinsically as

S(X) = 1 +
∞∑
n=1

∫
0<t1<···<tn<T

dXt1 ⊗ · · · ⊗ dXtn .

This tensor element S(X), known as the signature of the path X, plays an essential role in
rough path theory. The significance and usefulness of path signature is based on a fundamen-
tal theorem which asserts that every (weakly geometric) rough path is uniquely determined
by its signature up to tree-like pieces (cf. [15] and [2]). However, the proof of this uniqueness
result is non-constructive and does not contain information about how one can reconstruct
a rough path from its signature. The general reconstruction problem was studied by many
authors (cf. [25], [12], [3]).

On the other hand, combining with algebraic properties of signature, the uniqueness re-
sult ensures that essentially all information about the rough path is encoded in the tail of
its signature, i.e. when looking at the component

∫
dXt1 ⊗ · · · ⊗ dXtn in the asymptotics as

n→∞. An interesting question arises naturally as follows.

Question: Are there explicit and elegant formulae allowing us to recover intrinsic proper-
ties of the path from its signature tail asymptotics?

The study of this question begins by observing the following elementary estimate
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∥∥∥∥∫
0<t1<···<tn<T

dXt1 ⊗ · · · ⊗ dXtn

∥∥∥∥ 6
‖X‖n1-var

n!
(1.2)

when the path X has finite length. A surprising and highly non-trivial fact is that this simple
estimate becomes asymptotically sharp as n → ∞, at least for the class of C1 paths. In a
precise and elegant way, it was shown by Hambly-Lyons [15], and subsequently by Lyons-Xu
[24] that the tail asymptotics of the normalized signature recovers the length of a C1 path
with unit speed parametrization:

lim
n→∞

(
n!

∥∥∥∥∫
0<t1<···<tn<T

dXt1 ⊗ · · · ⊗ dXtn

∥∥∥∥) 1
n

= ‖X‖1-var. (1.3)

It was conjectured by Chang-Lyons-Ni [5] that the same formula should hold true for general
paths with finite length, which remains an important and challenging open problem.

We are interested in the analogue of the formula (1.3) in the rough path context. First
of all, the rough path analogue of the factorial estimate (1.2) becomes much deeper, and the
following type of uniform upper estimate for rough paths with finite p-variation (p > 1) was
due to Lyons [21] (cf. Theorem 2.5 below):∥∥∥∥∫

0<t1<···<tn<T
dXt1 ⊗ · · · ⊗ dXtn

∥∥∥∥ 6
Cp · ‖X‖np-var

(n/p)!
.

If one believes that the above estimate is asymptotically sharp as n → ∞ for paths whose
intrinsic roughness is p, we are naturally led to considering the quantity

Lp(X) , lim sup
n→∞

((
n

p

)
!

∥∥∥∥∫
0<t1<···<tn<T

dXt1 ⊗ · · · ⊗ dXtn

∥∥∥∥) p
n

(1.4)

constructed from the tail of signature, and looking for its connection with intrinsic properties
of the path X. The quantity Lp(X) certainly does not recover the usual p-variation, since
Lp(X) = 0 for any bounded variation path if p > 1 as a simple consequence of (1.2), while
the p-variation of a bounded variation path need not be zero . The first hint about the
meaning of Lp(X) was provided by Boedihardjo and Geng [1], in which the authors showed
that, when X is a Brownian motion and p = 2, with probability one Lp(X) is a determin-
istic constant multiple of the quadratic variation of Brownian motion. To some extent, this
is suggesting that, Lp(X) may be intimately related to certain notion of local p-variation
defined in a similar way to the usual p-variation but along partitions with arbitrarily fine
scales, which can also be interpreted as an additive notion of length in the rough path context.

The main goal of the present paper is to investigate this problem at a precise quantitative
level for the class of rough paths that are natural extensions of classical line segments. These
paths, known as pure rough paths, are of the form Xt = exp(tl) (0 6 t 6 1) where l is a Lie
polynomial of degree m > 1. If m = 1, Xt becomes a classical line segment represented by
the vector l ∈ V . In general, Xt carries an intrinsic roughness of m. This is also a natural
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class of rough paths in the sense that their signatures are given by the exponential of Lie
polynomials (cf. Proposition 2.11 below).

We are going to show that, for any pure rough path Xt = exp(tl) over Rd with roughness
m, under the projective tensor norm, the signature tail asymptotics Lm(X) defined by (1.4)
with p = m is precisely related to the highest degree component lm of the Lie polynomial l
through the uniform estimate

c(m, d) · ‖lm‖ 6 Lm(X) 6 ‖lm‖, (1.5)

where c(m, d) ∈ (0, 1] is a constant depending only on the roughness m and the dimension
d which also admits an explicit lower estimate. The quantity ‖lm‖ coincides with the local
m-variation of X interpreted by Proposition 2.10 below. When d = 2 and m = 2, 3, we have
c(m, d) = 1 and therefore

Lm(X) = ‖lm‖. (1.6)

The same conclusion also holds for some cases in degrees m = 4, 5. The precise formulation
of our main result is given by Theorem 2.13 below. On the other hand, if one works with the
Hilbert-Schmidt tensor norm, there is also a class of pure rough paths for which c(m, d) = 1.
We conjecture that the formula (1.6) is true for arbitrary pure rough paths. This can be
viewed as the analogue of the formula (1.3) in the pure rough path context.

Our proof of the upper estimate in (1.5) has a combinatorial flavour that relies on Stir-
ling’s approximation and the multivariate neo-classical inequality proved by Friz-Riedel [10].
The core of our work, which lies in establishing a matching lower estimate, is a novel method
based on the representation theory of complex semisimple Lie algebras. To be more precise,
our starting point is a general representation of the tensor algebra that allows us to develop
paths onto an automorphism group from Cartan’s viewpoint. Specific choices of such rep-
resentations were already used by Hambly-Lyons [15] and Lyons-Xu [24] for proving (1.3)
for C1 paths, and also by Chevyrev-Lyons [7] and Lyons-Sidorova [23] for studying other
signature-related properties. Using such an arbitrary representation already allows us to
establish a general intermediate lower bound of the signature tail asymptotics quantity in
terms of eigenvalues of the Lie polynomial defining the pure rough path. The key ingredient
in our approach, is to allow such representation factor through a complex semisimple Lie
algebra g and develop the highest degree Lie component into a so-called Cartan subalgebra of
g. It turns out that, under this semisimple picture, the associated representation theory for
g enables us to study spectral properties of the highest degree Lie component in an effective
and quantitative way, leading us to the main lower estimate. We explain the strategy and
elaborate these points more precisely in Section 4.2 as we develop the mathematical details.

It is also worthwhile to mention that, as an immediate application of our methodology,
one can prove a separation of points property for path signatures. More specifically, if g1

and g2 are two distinct group-like elements as the signatures of two different rough paths
over Rd, then one can find a finite dimensional semisimple Lie algebra g and an embedding
F : Rd → g, such that F (g1) 6= F (g2) where F also denotes the natural extension to the
tensor algebra over Rd. The precise formulation and proof of this fact is given in Corollary
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4.30 below. Such a separation property was first obtained by Chevyrev-Lyons [7] as an es-
sential ingredient for proving their uniqueness result for the expected signature of stochastic
processes.

Organization of the paper. In Section 2, we recall some basic notions from rough path
theory and then formulate our main result in Theorem 2.13. In Section 3, we give some
heuristics on the underlying problem by discussing some special examples. Another result
that complements our main result is stated in Theorem 3.1. In Section 4, we develop the
proof of our main result. Section 4.1 is devoted to the upper estimate, and Section 4.2 is
devoted to the lower estimate in which we divide the proof into several intermediate steps
and results. In Section 5, we give the proof of Theorem 3.1.

2 Notions from rough path theory and statement of the
main result

In this section, we recall some basic ideas and notions from the rough path theory developed
by Lyons [21]. We refer the reader to the monographs by Lyons-Qian [22] and Friz-Victoir
[11] for a systematic introduction. After that, we formulate the main result of the present
paper.

2.1 The rough path structure

The fundamental insight of rough path theory is that, beyond certain level of regularity, the
structure encoded in a given path living in some Banach space V becomes no longer sufficient
for yielding an analytically consistent notion of integration and differential equations, and
thus higher order structures (iterated path integrals) need to be specified along with the
underlying path as a priori information. Mathematically, a rough path should be viewed as
a generic path living inside some tensor group in which the state space V is embedded as
the first order structure.

Let (V, ‖ · ‖) be a given fixed Banach space over F = R or C.

Definition 2.1. A sequence {‖ · ‖V ⊗am : m > 1} of norms on the algebraic tensor products
{V ⊗am : m > 1} are called reasonable tensor algebra norms if

(i) ‖ · ‖V = ‖ · ‖;
(ii) ‖ξ ⊗ η‖V ⊗a(m+n) 6 ‖ξ‖V ⊗am · ‖η‖V ⊗an for ξ ∈ V ⊗am and η ∈ V ⊗an;
(iii) ‖φ⊗ψ‖ 6 ‖φ‖ · ‖ψ‖ for φ ∈ (V ⊗am)∗ and ψ ∈ (V ⊗an)∗ where the norms are the induced
dual norms;
(iv) ‖P σ(ξ)‖V ⊗am = ‖ξ‖V ⊗am for ξ ∈ V ⊗am and σ being a permutation of order m, where P σ

is the permutation operator induced by σ on m-tensors.

It is known that the inequalities in (ii) and (iii) automatically become equalities (cf. [9]).
The completion of V ⊗am under ‖ · ‖V ⊗am is denoted as (V ⊗m, ‖ · ‖V ⊗m).
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Examples of reasonable tensor algebra norms include the projective tensor norm, the
injective tensor norm, and the Hilbert-Schmidt tensor norm if V is a Hilbert space. Since
the projective tensor norm is mostly relevant to us, we recall its definition here. Given
ξ ∈ V ⊗am, the projective tensor norm of ξ is defined by

‖ξ‖proj , inf

{
r∑
i=1

‖vi1‖ · · · ‖vim‖ : ξ =
r∑
i=1

vi1 ⊗ · · · ⊗ vim with r > 1,vij ∈ V

}
.

Given a fixed norm on V , the associated projective tensor norm is the largest among all
reasonable tensor algebra norms. It admits the following dual characterization (cf. [28]):

‖ξ‖proj = sup {|B(ξ)| : B ∈ L(V × · · · × V ;R), ‖B‖ 6 1} . (2.1)

When V = Rd is equipped with the l1-norm with respect to the standard basis, the associated
projective tensor norm on V ⊗m coincides with the l1-norm with respect to the canonical
tensor basis.

From now on, we assume that a sequence of reasonable tensor algebra norms are given
and fixed. We often omit the subscript when the norms are clear from the context.

Let T ((V )) be the infinite tensor algebra consisting of tensor series ξ = (ξ0, ξ1, ξ2, · · · )
with ξn ∈ V ⊗n for each n (V ⊗0 , F). Given n > 1, let T (n)(V ) , ⊕nk=0V

⊗k be the truncated
tensor algebra of degree n. There are natural notions of exponential and logarithm over
these tensor algebras defined by using the standard Taylor expansion formula with respect
to the tensor product. For instance, the exponential function over T ((V )) is given by

exp(ξ) ,
∞∑
n=0

1

n!
ξ⊗n, ξ ∈ T ((V )),

while over T (n)(V ) it is defined by the same formula but truncated up to degree n.

Definition 2.2. A multiplicative functional of degree n is a continuous functional

X = (1, X1, · · · , Xn) : ∆T , {(s, t) : 0 6 s 6 t 6 T} → T (n)(V )

such that Xs,u = Xs,t ⊗Xt,u for all s 6 t 6 u. Given a real number p > 1, X is said to have
finite total p-variation if

‖X‖p-var ,
n∑
k=1

sup
P

(∑
ti∈P

‖Xk
ti−1,ti

‖
p
k

) k
p

<∞, (2.2)

where the supremum is taken over all finite partitions of [0, T ]. A rough path with roughness
p (or simply a p-rough path) is a multiplicative functional of degree bpc which has finite total
p-variation, where bpc denotes the largest integer not exceeding p.

Remark 2.3. Due to multiplicativity, a rough path Xs,t can be equivalently regarded as an
actual path Xt , X0,t and vice versa by Xs,t , X−1

s ⊗Xt. We do not distinguish these two
viewpoints.
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The notion of rough paths is mostly useful when a crucial Lie algebraic property is
satisfied. Recall that there is a natural Lie structure on the tensor algebra given by [ξ, η] ,
ξ ⊗ η − η ⊗ ξ. The space of homogeneous Lie polynomials of degree n, denoted as Ln(V ), is
the norm completion of the algebraic space Lan(V ) defined inductively by La1(V ) , V and
Lan+1(V ) , [V,Lan(V )]. Define the space of Lie polynomials of degree n by

L(n)(V ) , ⊕nk=1Lk(V ).

This is also called the free nilpotent Lie algebra of degree n. Correspondingly, the free
nilpotent Lie group of degree n is defined by

G(n)(V ) , exp(L(n)(V )).

They are both canonically embedded inside T (n)(V ).

Definition 2.4. A p-rough path is said to be weakly geometric if it takes values in the group
G(bpc)(V ).

Weakly geometric rough paths cover a wide range of interesting examples, for instance
bounded variation paths (p = 1), Brownian motion and continuous semimartingales (2 <
p < 3), wide classes of Gaussian processes and Markov processes (p > 3) etc. This is
the appropriate class of paths which the rough path theory of integration and differential
equations is based on.

2.2 The signature of a rough path

An important aspect of rough path theory is the characterization of rough paths in terms
of the so-called path signature, which is a generalized notion of iterated path integrals. Its
definition is based on the following basic property of rough paths proved by Lyons [21].

Theorem 2.5 (Lyons’ Extension Theorem). Let X = (Xs,t)06s6t6T be a p-rough path. Then
there exists a unique extension of X to a multiplicative functional X : ∆T → T ((V )) :

(s, t) 7→ Xs,t = (1, X1
s,t, · · · , X

bpc
s,t , · · · , Xn

s,t, · · · ),

whose restriction to T (n)(V ) has finite total p-variation for all n > bpc+ 1. Moreover, there
exist a universal constant βp depending only on p and a non-negative function ωX(s, t) related
to the p-variation of X, such that

‖Xn
s,t‖ 6

ωX(s, t)n/p

βp(n/p)!
, for all n > 1 and (s, t) ∈ ∆T , (2.3)

where the factorial (n/p)! is defined by using the Gamma function.

Definition 2.6. The tensor series X0,T ∈ T ((V )) is called the signature of X. It is usually
denoted as S(X).
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Example 2.7. If (Xt)06t6T is a bounded variation path, then its signature is precisely the
sequence of iterated path integrals(

1, XT −X0,

∫
0<s<t<T

dXs ⊗ dXt, · · ·
)
∈ T ((V ))

defined in the sense of Lebesgue-Stieltjes. In this case, the factorial estimate (2.3) reduces
to the elementary estimate (1.2). If (Bt)06t6T is a multidimensional Brownian motion, then
its (pathwise) signature coincides with the sequence of iterated stochastic integrals defined
in the sense of Stratonovich.

It is a fundamental result (cf. [15] and [2]) that every weakly geometric rough path over a
real Banach space is uniquely determined by its signature up to tree-like pieces. In addition,
it is a consequence of the weakly geometric property that any given component of signature
can be embedded into arbitrary higher degree components by raising tensor powers (cf. [5]).
Therefore, the tail of signature (in the asymptotics as degree tends to infinity) encodes
essentially all information about the underlying path.

In view of the factorial estimate (2.3), a natural quantity one can construct from the
tail of signature is the normalized component ((n/p)!‖Xn

0,T‖)p/n as n→∞. Since signature
components can vanish infinitely often, we are led to considering the functional

Lp(X) , lim sup
n→∞

((
n

p

)
!
∥∥Xn

0,T

∥∥) p
n

. (2.4)

Our goal is to investigate at a quantitative level how the tail asymptotics quantity Lp(X)
is related to certain notion of local p-variation of X for a natural class of rough paths known
as pure rough paths. These are straight forward analogues of line segments in the rough path
context, and it is also the class of rough paths whose signature is given by the exponential
of a Lie polynomial. They form the first non-trivial class of rough paths for the underlying
problem.

2.3 Pure rough paths and formulation of the main result

Now we give the precise definition of the aforementioned class of rough paths that we will
be working wtih. Let m > 1 be a given integer.

Definition 2.8. A pure m-rough path is a weakly geometric rough path of the form

Xt = exp(tl) ∈ G(m)(V ), 0 6 t 6 1,

where l ∈ L(m)(V ) is a Lie polynomial of degree m.

Example 2.9. When m = 1, a pure 1-rough path is simply a line segment in V.

We list a few basic properties of pure rough paths that are relevant to us and leave the
proofs in the appendix so as not to distract the reader from the main picture.
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Proposition 2.10. A pure m-rough path Xt = exp(tl) is a rough path with roughness m in
the sense of Definition 2.2. In addition, the local m-variation of X coincides with the norm
of the highest degree component of l, in the sense that

lim
n→∞

m∑
k=1

(∑
ti∈Pn

‖Xk
ti−1,ti

‖
m
k

) k
m

= ‖πm(l)‖

for any sequence of finite partitions Pn over [0, 1] whose mesh size tends to zero, where
πm : T (m)(V )→ V ⊗m is the canonical projection.

Proposition 2.11. Let Xt = exp(tl) be a pure m-rough path. Then its signature is equal to
exp(l) where the exponential is now taken over the infinite tensor algebra T ((V )). In addition,
up to tree-like equivalence this is the only weakly geometric rough path whose signature is
exp(l).

In the case of pure rough paths, we believe that the relationship between the signature
tail asymptotics and the local m-variation is as simple and neat as stated in the following
conjectural formula.

Conjecture 2.12. For every pure m-rough path Xt = exp(tl) ∈ G(m)(V ), the tail asymp-
totics quantity Lm(X) of signature equals the local m-variation of X. In view of Proposition
2.10, that is Lm(X) = ‖πm(l)‖.

As a first major step towards understanding this problem, our main result can be summa-
rized as a uniform upper and lower estimate of Lm(X) in terms of ‖πm(l)‖ for pure m-rough
paths.

Theorem 2.13. Let V be a finite dimensional Banach space, and let every tensor product
V ⊗n be equipped with the associated projective tensor norm. Then for each m > 1, there
exists a constant c(m, d) ∈ (0, 1] depending only on m and d , dimV, such that

c(m, d)‖πm(l)‖ 6 Lm(X) 6 ‖πm(l)‖

for all pure m-rough paths Xt = exp(tl) ∈ G(m)(V ). The factor c(m, d) admits an explicit
lower estimate

c(m, d) > Λ−md · 2−(νm,d!)
γνm,d

,

where Λd is a constant depending only on d, νm,d , dimLm(V ), and γ > 1 is a universal
constant.

In addition, if V = R2 is equipped with the l1-norm with respect to the canonical basis,
then for degrees m = 2, 3, we further have c(m, d) = 1, showing that Conjecture 2.12 holds
for these cases. The same conclusion holds for some cases in degrees m = 4, 5 specified in
Section 4.2.4, Part II.

Remark 2.14. When m = 1, Conjecture 2.12 boils down to the bounded variation formula
(1.3) which holds trivially in this case since the underlying path is now a classical line
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segment. Apart from the low degree cases stated in Theorem 2.13, the conjecture also holds
true for the following two classes of pure rough paths with arbitrary roughness: homogeneous
(cf. Section 3 below) and inhomogeneous with two components satisfying certain parity
condition (cf. Theorem 3.1 below under the Hilbert-Schmidt tensor norm).

Although the main problem and result are motivated from rough path theory, we also
give a parallel algebraic formulation which might raise potential interests from other fields.

Conjecture 2.12’. Let (V, ‖ · ‖) be a finite dimensional Banach space, and let the ten-
sor products be equipped with some given reasonable tensor algebra norms. Then for any Lie
polynomial l, the following asymptotics formula holds true:

lim sup
n→∞

(( n
m

)
!‖πn(exp(l))‖

)m
n

= ‖πm(l)‖,

where m is the degree of the Lie polynomial l.

Theorem 2.13’. Let (V, ‖ · ‖) be a d dimensional Banach space, and let the tensor products
be equipped with the associated projective tensor norm. Then for each m > 1, there exists a
constant c(m, d) ∈ (0, 1] depending only on m and d, such that for any Lie polynomial l of
degree m, the following estimate holds true:

c(m, d)‖πm(l)‖ 6 lim sup
n→∞

(( n
m

)
!‖πn(exp(l))‖V ⊗n

)m
n
6 ‖πm(l)‖.

The factor c(m, d) admits an explicit lower estimate, and for some low degree cases we further
have c(m, d) = 1 giving the sharp result, precisely as stated in Theorem 2.13.

3 Some special examples and heuristic calculations

Before developing the proof of Theorem 2.13, we examine a few special examples in order to
get a better sense of the problem.

In the first place, the problem is trivial when (and only when) Xt is defined by a ho-
mogeneous polynomial. More precisely, if Xt = exp(tl) with l ∈ V ⊗m, it is immediate
that

Xn = πn(exp(l)) =
∞∑
k=0

1

k!
πn(l⊗k) =

{
1

(n/m)!
l⊗(n/m), m | n,

0, m - n.
Therefore,

Lm(X) = lim
k→∞

(
k!‖Xkm‖

) 1
k = lim

k→∞

(
‖l⊗k‖

1
k

)
= ‖l‖, (3.1)

and Conjecture 2.12 holds trivially for Xt.
A less trivial example is l = e1 + [e1, e2], in which we have

X2n = π2n(exp(l)) =
2n∑
k=n

1

k!
π2n

(
(e1 + [e1, e2])⊗k

)
. (3.2)
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A rather special observation in this example is that, the expansion of π2n((e1 + [e1, e2])⊗k)
is supported on disjoint sets of words for different k’s. Suppose we work with the projective
tensor norm induced from the standard l1-norm on R2. It then follows that

‖X2n‖ =
2n∑
k=n

1

k!

∥∥π2n

(
(e1 + [e1, e2])⊗k

)∥∥ >
2n

n!
.

In particular,
L2(X) > lim sup

n→∞

(
n!‖X2n‖

) 1
n = 2 = ‖π2(l)‖.

Combining with the general upper bound to be established in Theorem 4.1 below, we see
that Conjecture 2.12 holds for Xt.

However, it becomes much less clear how similar calculations can be done even for the
next simple candidate l = e1 + e2 + [e1, e2]. Brute force calculation does not give us much
insight to proceed further. The main challenge of the problem lies in understanding the
complicated interactions (possibly cancellations) among different degree components of l
when looking at the signature expansion at arbitrarily high degrees.

On the other hand, some extra mileage can still be achieved if we work with the Hilbert-
Schmidt tensor norm. Recall that the Hilbert-Schmidt tensor norm over the tensor product
of two Hilbert spaces H1, H2 is induced by

〈v1 ⊗ w1, v2 ⊗ w2〉H1⊗H2 , 〈v1, v2〉H1 · 〈w1, w2〉H2 , v1, v2 ∈ H1, w1, w2 ∈ H2.

In this context, we can prove the following result. We postpone the proof to Section 5, in
which the strategy, based on orthogonality properties in free Lie algebras, is very different
from the main approach of proving Theorem 2.13.

Theorem 3.1. Let V be a finite dimensional Hilbert space, and let the tensor products be
equipped with the induced Hilbert-Schmidt tensor norm. Suppose that Xt = exp(t(la + lb)),
where la, lb are homogeneous Lie polynomials of degrees a, b respectively for a < b. If
(b − a)/gcd(a, b) is an odd integer where "gcd" denotes the greatest common divisor, then
Conjecture 2.12 holds for Xt.

As an example, we immediately see that Conjecture 2.12 holds for l = e1 +e2 +[e1, e2] un-
der the Hilbert-Schmidt tensor norm. However, the argument breaks down if (b−a)/gcd(a, b)
is an even number, or if l has more than two homogeneous components.

The above special examples seem to suggest that, the key to getting the lower bound
is the concentration of the degree km signature expansion around the term πm(l)⊗k/k! as
k → ∞. However, the picture can be much subtler in general. Some heuristic estimates on
magnitudes suggest that the signature expansion at degree km is concentrated at a number
of terms near πm(l)⊗k/k!, each possibly having comparable magnitudes. As k → ∞, the
total number of these terms seem to be of order o(k), and there can be delicate cancellations
among them which are hard to analyze.

One contribution of the present paper is to develop a general strategy which on the one
hand allows us to overcome the above difficulties to some extent and on the other hand is

12



specific enough to be implemented computationally in order to generate explicit quantitative
estimates in many interesting examples.

4 Proof of the main theorem

Throughout the rest of this section, unless otherwise stated, let (V, ‖·‖) be a finite dimensional
Banach space and let each tensor product V ⊗n (n > 1) be equipped with the projective tensor
norm. We work with a given purem-rough pathXt = exp(tl) defined by some Lie polynomial
l ∈ L(m)(V ).

We aim at studying the relationship between the signature tail asymptotics of X defined
by Lp(X) in (2.4) with p = m, and the local m-variation of X which is also equal to
‖πm(l)‖ by Proposition 2.10. Our main result, as stated in Theorem 2.13, is a uniform upper
and lower estimate of Lm(X) in terms of ‖πm(l)‖. The techniques we develop for proving
the two estimates are drastically different. The upper estimate is based on combinatorial
arguments while the lower estimate relies on the representation theory of complex semisimple
Lie algebras.

4.1 The upper estimate

We start by establishing the (sharp) upper bound. In this part, more generality can be
pursued: V can be infinite dimensional, tensor norms only need to be reasonable and l need
not be of Lie type.

Theorem 4.1. We have the following upper estimate

Lm(X) 6 ‖πm(l)‖

for all rough paths of the form Xt = exp(tl) with l being an arbitrary element in T (m)(V ).

Our proof of Theorem 4.1 relies on a multivariate neo-classical inequality proved by
Friz-Riedel [10]. The bivariate version was proved by Hara-Hino [16].

Lemma 4.2 (cf. [10], Lemma 1). Suppose that a1, · · · , am > 0, p > 1 and n ∈ N. Then we
have ∑

06k1,··· ,km6n
k1+···+km=n

a
k1/p
1 · · · akm/pm

(k1/p)! · · · (km/p)!
6 pm−1 · (a1 + · · ·+ am)n/p

(n/p)!
.

We also need the following analytic lemma.

Lemma 4.3. Suppose that 0 < α < β 6 1 and a, b > 0. Then we have

lim sup
n→∞

(
(nα)!

n∑
j=0

ajαb(n−j)α

(jβ)! ((n− j)α)!

) 1
nα

6 b.

13



Proof. From Stirling’s approximation, we know that

(jα)!

(jβ)!
∼
√
α

β

(
ααeβ−α

ββ

)j
j(α−β)j, j →∞

In particular, given any arbitrary ε > 0, there exists J > 1 such that

(jα)!

(jβ)!
6 εj ∀j > J.

It follows that

n∑
j=0

ajαb(n−j)α

(jβ)! ((n− j)α)!
6

J−1∑
j=0

ajαb(n−j)α

(jβ)! ((n− j)α)!
+

n∑
j=J

(
ε1/αa

)jα
b(n−j)α

(jα)! ((n− j)α)!
. (4.1)

To estimate the first term on the right hand side of (4.1), using Stirling’s approximation
again, it is easily seen that

(nα)!

(jβ)! ((n− j)α)!
ajαb(n−j)α 6 CnJαbnα for all 0 6 j < J,

where C is a constant depending on a, b, α, β and J . To estimate the second term on the
right hand side of (4.1), using Lemma 4.2 with m = 2 and p = 1/α, we have

n∑
j=J

(
ε1/αa

)jα
b(n−j)α

(jα)! ((n− j)α)!
6

(
ε1/αa+ b

)nα
α(nα)!

.

By substituting the above two estimates into (4.1), we have

(nα)!
n∑
j=0

ajαb(n−j)α

(jβ)! ((n− j)α)!
6 CnJαbnα +

(
ε1/αa+ b

)nα
α

.

Therefore, by taking n→∞, we arrive at

lim sup
n→∞

(
(nα)!

n∑
j=0

ajαb(n−j)α

(jβ)! ((n− j)α)!

) 1
nα

6 ε1/αa+ b,

which yields the result since ε is arbitrary.

With the help of the above two lemmas, we can now give the proof of Theorem 4.1.
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Proof of Theorem 4.1. Given Xt = exp(tl) with l ∈ T (m)(V ), we write l = l1 + · · ·+ lm where
li ∈ V ⊗i. For each n > 1, the n-th degree signature of X can be estimated by

‖Xn‖ = ‖πn (exp(l)) ‖

=

∥∥∥∥∥
∞∑
k=0

1

k!
πn
(
(l1 + · · ·+ lm)⊗k

)∥∥∥∥∥
6

∞∑
k=0

1

k!

∑
16i1,··· ,ik6m
i1+···+ik=n

‖li1‖ · · · ‖lik‖

=
∑

j1,··· ,jm>0
j1+2j2+···+mjm=n

‖l1‖j1 · · · ‖lm‖jm
j1! · · · jm!

.

To reach the last equality, we have used a different way to count terms that have a total
degree of n in the expansion of (‖l1‖+ · · ·+‖lm‖)k. By applying change of variables kr = rjr
(1 6 r 6 m), we arrive at

‖Xn‖ 6
∑

k1,··· ,km>0
k1+···+km=n

‖l1‖k1‖l2‖k2/2 · · · ‖lm‖km/m

k1!(k2/2)! · · · (km/m)!
. (4.2)

Next, for each fixed km, by using Lemma 4.2 with p = m− 1, we see that

∑
k1,··· ,km−1>0

k1+···+km−1=n−km

‖l1‖k1 · · · ‖lm−1‖km−1/(m−1)

k1! · · · (km−1/(m− 1))!
6 (m− 1)m−2 · a(n−km)/m

((n− km)/(m− 1))!
,

where

a ,

(
m−1∑
r=1

‖lr‖
m−1
r

) m
m−1

.

By substituting this into (4.2), we obtain

‖Xn‖ 6 (m− 1)m−2

n∑
km=0

a(n−km)/m‖lm‖km/m

(km/m)!((n− km)/(m− 1))!
.

Now the result follows from Lemma 4.3 with α = 1/m, β = 1/(m− 1) and b = ‖lm‖.

Remark 4.4. The upper bound given by Theorem 4.1 is sharp, which can be easily seen by
considering the case when l is homogeneous (i.e. when l ∈ V ⊗m).
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4.2 The core of the matter: Lie algebraic developments and the
lower estimate

Now we turn our attention to establishing a matching lower bound, which is the core of the
present paper. The philosophy of our main strategy can be briefly summarized as follows.

Our starting point is to look at the development of paths into a space of automorphisms
associated with a given representation of the tensor algebra. This enables us to obtain
an intermediate lower estimate of Lm(X) in terms of eigenvalues of the highest degree Lie
component defining X under the given representation, and thus also allows us to eliminate
the subtle contributions arising from the presence of lower degree Lie components.

The problem then reduces to designing suitable type of representations under which
one can study spectral properties of Lie polynomials effectively. For this purpose, as the
next key point in our approach which leads us to the main lower estimate, we design a
representation that factors through a complex semisimple Lie algebra. In this way, the
associated representation theory enables us to study eigenvalues of the highest degree Lie
component at an explicit and quantitative level. This is largely due to the presence of an
abelian subalgebra (a so-called Cartan subalgebra) consisting of semisimple elements, a basic
feature of semisimple Lie algebras that is quite different from nilpotent (or more generally,
solvable) Lie algebras. A crucial step towards making good use of such feature is to develop
the highest degree Lie polynomials into this Cartan subalgebra.

Our plan of proving the main lower estimate is organized in the following way, which also
underlines the main ingredients of our strategy.

Organization of this subsection. In Section 4.2.1, we introduce the notion of Lie al-
gebraic developments, which is a main tool we will be using for proving our lower estimate.
In Section 4.2.2, we prove an intermediate lower estimate using path developments and fi-
nite dimensional perturbation theory. Section 4.2.3 is devoted to reaching our main lower
estimate from the intermediate one, and for this purpose it is further divided into four parts.
Part I contains a quick review on several notions from the representation theory of complex
semisimple Lie algebras that are needed in our approach. In Part II, we develop ways of
mapping a space of homogeneous Lie polynomials into a Cartan subalgebra, by using basic
root patterns from semisimple Lie theory. Part III is devoted to the proof of a consistency
lemma for certain polynomial systems, which is a crucial ingredient in order to obtain a uni-
form lower estimate. In Part IV, having all necessary ingredients at hand, we give the proof
of our main lower estimate by designing appropriate Lie algebraic developments. In Section
4.2.4, we perform explicit calculations in low degree cases to demonstrate how our strategy
can be implemented specifically, leading to the sharp lower bound in certain situations.

4.2.1 Lie algebraic developments of rough paths

To describe the necessary structures efficiently, we start with the following definition. Given
a Banach space W , we use the notation End(W ) (respectively, Aut(W )) to denote the space
of continuous linear endomorphisms (respectively, automorphisms) over W , equipped with
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the operator norm.

Definition 4.5. Let V be a real or complex Banach space. A Lie algebraic development Φ
of V consists of a linear map F : V → g into a complex Lie algebra g and a representation
ρ : g→ End(W ) of g on a complex Banach space W such that Φ = ρ ◦F is continuous. The
development Φ is said to be finite dimensional if g and W are both finite dimensional. In
situations when the intermediate Lie algebra g is not relevant, we simply refer to Φ : V →
End(W ) as a development.

Remark 4.6. When V is real, linearity is understood over R by regarding a complex vector
space as a real vector space in the obvious way.

Let Φ : V → End(W ) be a given development. According to the universal property of the
projective tensor product (cf. [22], Theorem 5.6.3), for each n > 1, Φ induces a continuous
linear map Φ(n) : V ⊗n → End(W ) such that

Φ(n)(v1 ⊗ · · · ⊗ vn) = Φ(v1) · · ·Φ(vn)

and
‖Φ(n)‖V ⊗n→End(W) 6 ‖Φ‖nV→End(W ). (4.3)

It follows that Φ induces a natural algebra homomorphism from a subspace of T ((V )) to
End(W ), which is defined by (still denoted as Φ)

Φ ((ξ0, ξ1, ξ2, · · · )) , ξ0 · Id +
∞∑
n=1

Φ(n)(ξn),

provided that the sum on the right hand side is convergent under the operator norm on
End(W ). In addition, Φ descends to a natural Lie algebra homomorphism from the free Lie
algebra L(V ) = ⊕∞n=1Ln(V ) over V into End(W ).

Under the given development Φ, every rough path (Xt)06t6T over V can be developed
onto the automorphism group Aut(W ) by solving the linear ODE{

dΓt = Γt · Φ(dXt), 0 6 t 6 T,

Γ0 = Id.
(4.4)

Using Picard’s iteration, it is easily seen that

Γt =
∞∑
n=0

∫
0<t1<···<tn<t

Φ(dXt1) · · ·Φ(dXtn)

=
∞∑
n=0

Φ(n)

(∫
0<t1<···<tn<t

dXt1 ⊗ · · · ⊗ dXtn

)
= Φ(X0,t), (4.5)

where X0,t is the Lyons extension ofX given by Theorem 2.5. Note that by the factorial decay
estimate in the same theorem, Φ(X0,t) is well defined. In particular, we have ΓT = Φ(S(X)).
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Remark 4.7. In the above discussion, the intermediate Lie algebra g and the complex struc-
ture appearing in Definition 4.5 are not so relevant yet, and the structure used here is simply
a representation of the tensor algebra. Their roles will become clear later on when we look
for explicit quantitative lower estimates for the signature.

The viewpoint of developing Euclidean paths onto a Lie group was essentially due to
Cartan and had been used by many authors for geometric reasons. We give an example
which is related to studies on path signatures.

Example 4.8. Hambly-Lyons [15] proved the asymptotics formula (1.3) for C1-paths (with
certain extra regularity condition) by developing the underlying path onto the space of
constant negative curvature. Using the notion of Lie algebraic developments, in their case
V = Rd,

g =

{(
A x
xT 0

)
∈ Mat(d+ 1;R) : A ∈ so(d), x ∈ Rd

}
is the Lie algebra of the isometry group for the standard d-dimensional hyperboloid. The
embedding F : V → g is given by

F (x) ,

(
0 x
xT 0

)
, x ∈ Rd,

and ρ : g → End(W ) is the canonical matrix representation with W = Rd+1. Rather than
looking at the developed path Γt in the isometry group, the authors worked with the trajec-
tory on the hyperboloid traced out by the action of Γt on a base point of the hyperboloid.
Their main philosophy, which is rather geometric, is to make use of exotic properties of hyper-
bolic geodesics which do not have Euclidean counterparts. Related results by Lyons-Xu [24]
for studying signature inversion and by Boedihardjo-Geng [1] for studying tail asymptotics
of the Brownian signature are also based on similar geometric intuitions. In this hyperbolic
picture, there is no need to work with complex structure appearing in Definition 4.5.

In contrast to the hyperbolic geometric ideas, our approach deviates from the afore-
mentioned works by not projecting the path onto a base manifold which the group acts
on. Instead of following geometric intuitions, we look at path developments from an al-
gebraic viewpoint, which provides a more suitable framework for the implementation of
representation-theoretic techniques.

4.2.2 An intermediate lower estimate

Using the notion of developments, we can first establish a general lower estimate which holds
for arbitrary rough paths. A similar estimate already appeared in [1] for the hyperbolic
development of Brownian motion. Given any p-rough path Xt and λ > 0, we use δλ(Xt) to
denote the dilated path (1, λX1

t , · · · , λbpcX
bpc
t ).

Proposition 4.9. Let (Xt)06t6T be a p-rough path over some Banach space V . For any
given nonzero development Φ : V → End(W ), we have the following lower estimate for the
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signature tail asymptotics of X:

Lp(X) > lim sup
λ→∞

log ‖ΓλT‖W→W(
λ‖Φ‖V→End(W )

)p , (4.6)

where for λ > 0, (Γλt )06t6T denotes the development of the dilated path δλ(Xt) under Φ,
defined by the ODE (4.4).

Proof. According to the formula (4.5) for path developments, we have

ΓλT =
∞∑
n=0

λnΦ(n) (Xn) ,

where Xn is the degree n component of the signature of X. For given N > 1, define

LN , sup
n>N

((
n

p

)
!‖Xn‖

) p
n

,

which is finite according to the factorial estimate (2.3). Note that if LN = 0 for some N , then
the right hand side of (4.6) is zero since ΓλT becomes polynomial in λ in this case. Therefore,
we will assume that LN > 0 for all N . It then follows from (4.3) that

‖ΓλT‖W→W

6
N−1∑
n=0

(λ‖Φ‖)n‖Xn‖+
∞∑
n=N

(λ‖Φ‖)n‖Xn‖

6
N−1∑
n=0

(λ‖Φ‖)n‖Xn‖+
∞∑
n=N

(λp‖Φ‖pLN)n/p

(n/p)!

=
∞∑
n=0

(λp‖Φ‖pLN)n/p

(n/p)!
+

N−1∑
n=0

(
(λ‖Φ‖)n‖Xn‖ − (λp‖Φ‖pLN)n/p

(n/p)!

)
, (4.7)

where for notational simplicity we have omitted the subscript for the operator norm of Φ.
To understand the asymptotic behaviour of the right hand side as λ → ∞, we first

consider the explicit function defined by

f(x) ,
∞∑
n=0

xn/p

(n/p)!
.

We claim that
f(x) 6 (p+ 1)xex for all x > 1. (4.8)

Indeed, for each m > 0, define Rm to be the set of real numbers r ∈ [0, p) such that mp+ r
is an integer. Then Rm ⊆ [0, p) consists of no more than p+ 1 elements. Therefore,

f(x) =
∞∑
m=0

∑
r∈Rm

xm+r/p

(m+ r/p)!
6

∞∑
m=0

xm

m!

∑
r∈Rm

xr/p 6 (p+ 1)x
∞∑
m=0

xm

m!
= (p+ 1)xex.
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By applying (4.8) to the first term on the right hand side of (4.7) and denoting the second
term as qN(λ), we obtain that

‖ΓλT‖W→W 6 (p+ 1)λp‖Φ‖pLN exp (λp‖Φ‖pLN) + qN(λ).

Note that qN(λ) has polynomial growth in λ. Therefore, by taking λ→∞, we have

lim sup
λ→∞

log ‖ΓλT‖W→W
(λ‖Φ‖)p

6 LN .

Since N is arbitrary, we conclude that

lim sup
λ→∞

log ‖ΓλT‖W→W
(λ‖Φ‖)p

6 inf
N>1

LN = Lp(X).

At first glance, the estimate (4.6) does not seem to be as useful as it will be. We now
unwind the shape of its right hand side in the context of pure rough paths. This leads us
to the following intermediate lower estimate. From now on, we confine ourselves in finite
dimensional developments, which is the main situation where useful calculations can be done
explicitly.

Theorem 4.10. Let Xt = exp(tl) be a pure m-rough path with l ∈ L(m)(V ). For any given
finite dimensional development Φ : V → End(W ), we have

Lm(X) >
sup {Re(µ) : µ ∈ σ(Φ(lm))}

‖Φ‖mV→End(W )

, (4.9)

where lm , πm(l) is the highest degree component of l, and σ(Φ(lm)) denotes the set of
eigenvalues of Φ(lm) ∈ End(W ).

Proof. The proof is an application of perturbation theory in finite dimensions. Let µ be
an eigenvalue of Φ(lm) and write l = l1 + · · · + lm as the sum of homogeneous components.
According to [20], Chapter 2, Theorem 5.1 and Theorem 5.2 applied to the continuous family

(0,∞) 3 λ 7→ T (λ) , Φ(lm) +
1

λ
Φ(lm−1) + · · ·+ 1

λm−1
Φ(l1) ∈ End(W )

of bounded linear transformations, we know that there exists a complex valued continuous
function φ(λ), such that φ(λ) is an eigenvalue of T (λ) for all λ and φ(λ) → µ as λ → ∞.
On the other hand, let (Γλt )06t61 be the development of the dilated path δλ(Xt) under Φ. By
(4.5) and the definition of operator norm, we have

‖Γλ1‖W→W = ‖Φ (δλ(exp(l))) ‖W→W = ‖ exp(Φ(δλ(l)))‖W→W
= ‖ exp(λmT (λ))‖W→W > |exp (λmφ(λ))| = exp (λmRe(φ(λ))) .

Therefore,
log ‖Γλ1‖W→W

λm
> Re(φ(λ))

for all λ > 0. Now the result follows from Proposition 4.9 by taking λ→∞.
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Remark 4.11. Note that the right hand side of (4.9) does not depend on lower degree compo-
nents of l. In other words, Theorem 4.10 provides a possible way of eliminating the compli-
cated interactions among different degree components of l in the signature tail asymptotics.
Nonetheless, it is not true that this fact allows us to conclude Conjecture 2.12 directly from
the homogeneous case (i.e. when l = lm) for which we know the result holds trivially (cf.
(3.1) in Section 3). The subtle point is that, as suggested by (4.9), the elimination of lower
degree effects is only achieved through a given development Φ. Therefore, even though we
know the result holds for the homogeneous case, one needs to see that the lower bound can
be attained at some specific choice of developments in order to conclude the result for the
inhomogeneous case. Designing such developments is the main goal of what follows.

4.2.3 The main lower estimate

In view of Theorem 4.10, to obtain useful lower bounds on Lm(X), one needs to design
suitable Lie algebraic developments under which we can estimate eigenvalues of lm effectively.
This is where the intermediate Lie algebra g and the complex structure in Definition 4.5 come
into play. In particular, we will choose g to be a finite dimensional complex semisimple Lie
algebra and rely on the associated representation theory.

I. Notions from the representation theory of complex semisimple Lie algebras

To explain how the semisimple structure plays a role, it is helpful to first recall some rele-
vant notions from Lie theory. We refer the reader to [18] for more details. Unless otherwise
stated, all Lie algebras and representations are finite dimensional over the complex field.
The main benefit of this setting is the existence of eigenvalues for linear transformations,
which significantly simplifies the associated representation theory.

Definition 4.12. A complex Lie algebra g is called semisimple if it is isomorphic to a direct
sum g ∼= g1 ⊕ · · · ⊕ gr of Lie algebras, where each summand gi is simple in the sense that it
does not contain non-trivial proper ideals.

It can be shown that semisimpleness is equivalent to the non-degeneracy of the Killing
form, which is the bilinear form B : g× g→ C defined by

B(X, Y ) , Tr (ad(X) ◦ ad(Y )) ,

where Tr means taking trace and ad : g → End(g) denotes the adjoint representation of g
given by ad(X)(Z) , [X,Z].

A central concept in semisimple Lie theory that is also crucial for us is the following.

Definition 4.13. A Cartan subalgebra of g is a subspace h ⊆ g such that:

(i) h is a maximal abelian subalgebra of g;
(ii) for each H ∈ h, the linear transformation ad(H) ∈ End(g) is semisimple (over C this is
equivalent to being diagonalizable).
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For a complex semisimple Lie algebra, a Cartan subalgebra always exists and it is unique
up to conjugation in g. Let h be a given Cartan subalgebra of g. By its definition and a
standard application of linear algebra, given an arbitrary representation ρ : g → End(W ),
all elements of h are simultaneously diagonalizable when viewed as linear transformations
over W under ρ. More specifically, a complex linear functional µ ∈ h∗ is called a weight for
the given representation ρ if the subspace

W µ , {w ∈ W : ρ(H)w = µ(H)w for all H ∈ h} (4.10)

is non-trivial. It follows that there are at most finitely many weights for ρ. Denote their col-
lection by Π(ρ). The spaceW then admits the decomposition (simultaneous diagonalization)
W = ⊕µ∈Π(ρ)W

µ, in which for every H ∈ h, W µ is an eigenspace of ρ(H) with eigenvalue
µ(H) (µ ∈ Π(ρ)).

Indeed, much more can be said in the semisimple setting. We first look at the adjoint
representation of g. Given a complex linear functional α ∈ h∗, define the subspace

gα , {X ∈ g : ad(H)(X) = α(H)X for all H ∈ h}

in the same way as (4.10). It is easy to verify that g0 = h, and [gα, gβ] ⊆ gα+β for all
α, β ∈ h∗. A complex linear functional α ∈ h∗ is called a root of g with respect to h if it is
a weight for the adjoint representation, i.e. if gα 6= {0}. In this case, gα is called the root
space associated with the root α. As before, there are at most finitely many roots. A basic
result in semisimple Lie theory is the following so-called root space decomposition.

Theorem 4.14. Let ∆ ⊆ h∗ be the set of nonzero roots with respect to a given Cartan
subalgebra h. Then g can be written as the direct sum

g = h +
∑
α∈∆

gα.

In addition, dim gα = 1 for each α ∈ ∆, and if α, β are two roots with α + β ∈ ∆, then

[gα, gβ] = gα+β. (4.11)

It is possible to study general representations using the structure of roots. Before stating
relevant results, we need a few more definitions. Let E be the vector space generated by ∆
over R. A subset ∆0 of ∆ is called a base if:

(i) ∆0 is a basis of E;
(ii) each root β ∈ ∆ can be expressed as β =

∑
α∈∆0

kαα with integral coefficients kα either
being all non-negative or all non-positive.

The roots in ∆0 are called simple roots. The choice of ∆0 is not unique but its cardi-
nality is. The Lie algebra g is said to have rank m if ∆0 has m elements, which is equivalent
to saying that dimC h = m. Let ∆0 = {α1, · · · , αm} be a given set of simple roots. The
Killing form B restricted to h is also non-degenerate. It follows that, for each αi ∈ ∆0, there
exists Ti ∈ h such that αi(H) = B(Ti, H) for all H ∈ h. We define the normalized element
Hi , 2Ti/B(Ti, Ti).
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Definition 4.15. A linear functional λ ∈ h∗ is called a dominant integral functional if all
λ(Hi) (1 6 i 6 m) are non-negative integers. The set {λ1, · · · , λm} of fundamental dominant
integral functionals are defined by the duality relation λi(Hj) = δij.

The main result in the representation theory of complex semisimple Lie algebras is stated
as follows. Recall that a representation ρ : g→ End(W ) is irreducible if W does not contain
non-trivial proper g-invariant subspaces.

Theorem 4.16. Let g be a complex semisimple Lie algebra with a given Cartan subalge-
bra h and a given base ∆0 of simple roots. There is a one-to-one correspondence between
dominant integral functionals and isomorphism classes of (finite dimensional) irreducible
representations.

We must point out that representation theory provides richer quantitative information
than the statement of the above classification theorem itself. A main consequence of the
theory which is relevant to us, is that for each dominant integral functional λ, the set of
weights for the associated irreducible representation can be described in a rather quantitative
way, making the computation of eigenvalues of elements in h quite tractable. We use an
important example to illustrate this point, in which all the aforementioned notions and
results can also be worked out explicitly. The implementation of our main technique is
largely based on this example.

Consider g = sl(m,C) (m > 2), the set of m×m complex matrices with zero trace. Then
g is a complex semisimple (in fact, simple) Lie algebra of rank m−1. A Cartan subalgebra h
can be chosen as the subspace of diagonal matrices in g. For each 1 6 i 6 m, define µi ∈ h∗

to be linear functional of taking the i-th diagonal entry. Then the set of nonzero roots with
respect to h is given by

∆ =
{
αi,j , µi − µj : 1 6 i 6= j 6 m

}
.

In addition, for each i 6= j, the root space gαi,j = C · Ei,j, where Ei,j is the matrix whose
(i, j)-entry is 1 and all other entries are 0’s. To summarize, the root space decomposition
takes the form

g = h +
∑

16i 6=j6m

C · Ei,j.

A base of simple roots can be chosen as

∆0 =
{
αi , µi − µi+1 : 1 6 i 6 m− 1

}
. (4.12)

For each simple root αi ∈ ∆0, the associated Hi ∈ h is given by the diagonal matrix in
which the i-th diagonal entry is 1, the (i + 1)-th diagonal entry is −1, and all other entries
are zero. The representation theory of g = sl(m,C) can be summarized as the following
theorem. Note that g acts on W , Cm in the canonical way by matrix multiplication. We
call this canonical matrix representation ρ. For each k > 1, ρ induces a representation ρ⊗k
(respectively, ρ∧k) on W⊗k (respectively, on Λk(W ), the k-th exterior power of W ) in the
natural way. For 1 6 k 6 m− 1, denote Wk , Λk(W ).
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Theorem 4.17. Choose a Cartan subalgebra and a base of simple roots for g = sl(m,C) as
before.

(1) The set {λ1, · · · , λm−1} of fundamental dominant integral functionals are given by λk =
µ1 + · · ·+ µk (1 6 k 6 m− 1). For each k, the irreducible representation associated with λk
is given by ρ∧k : g→ End(Wk), whose set of weights is precisely

Π(λk) = {µi1 + · · ·+ µik : 1 6 i1 < · · · < ik 6 m} .

(2) For each dominant integral functional λ = a1λ1 + · · · + am−1λm−1 with ai’s being non-
negative integers, the representation ρλ : g → End(W⊗a1

1 ⊗ · · · ⊗W⊗am−1

m−1 ) contains exactly
one copy of the irreducible representation associated with λ, whose set of weights is a subset
of {

m−1∑
k=1

ak∑
j=1

νk,j : νk,j ∈ Π(λk)

}
.

Remark 4.18. In the second part of the above theorem, by using Schur polynomials and
Young tableaux, it is possible to identify the precise copy of irreducible representation con-
tained in the tensor product representation as well as the associated set of weights. However,
at the moment we do not see the need of pursuing this generality.

To conclude this part, we mention as an example that the adjoint representation of
sl(m,C) is the irreducible representation associated with the dominant integral functional
λ1 + λm−1 = µ1 − µm.

II. An essential step: developing the highest degree Lie component into a Cartan
subalgebra

Returning to our signature problem, let Xt = exp(tl) be a pure m-rough path, where
l ∈ L(m)(V ) whose the highest degree component is denoted by lm. An essential step in
our approach, is to choose g to be a finite dimensional complex semisimple Lie algebra in the
Lie algebraic development, together with a linear embedding F : V → g such that the space
Lm(V ) of homogeneous Lie polynomials of degree m is mapped into a Cartan subalgebra of
g under the induced homomorphism on the free Lie algebra L(V ). In this way, according to
Theorem 4.10, we are immediately led to the lower estimate

Lm(X) >
sup {Re(µ(F (lm))) : µ ∈ Π(ρ)}

‖Φ‖mV→End(W )

(4.13)

under the given Lie algebraic development Φ = ρ◦F , where recall that Π(ρ) ⊆ h∗ is the set of
weights for the representation ρ. Representation theory then provides tractable methods of
computing weights for given representations, hence leading us to more explicit lower bounds
on Lm(X).

The simplest way of mapping Lm(V ) into a Cartan subalgebra is through the Lie algebra
sl(m,C), which can be seen by straight forward matrix calculation. However, the essential
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reason behind such calculation is hidden in the root pattern as stated in the following lemma.
Working with root patterns also allows one to identify other semisimple Lie algebras which
are not isomorphic to sl(m;C) but achieve the same property (cf. Example 4.21 and Example
4.22 below).

Lemma 4.19. Suppose that there exist m− 1 nonzero roots α1, · · · , αm−1 with respect to h,
such that all nonzero roots one can construct from them as integral linear combinations are
precisely of the form ±(αi + αi+1 + · · ·+ αj) with 1 6 i 6 j 6 m− 1. Define the subspace

E , gα1 ⊕ · · · ⊕ gαm−1 ⊕ g−(α1+···+αm−1). (4.14)

Then
E(m−1) , [· · · [[[E,E], E], E] · · · ]︸ ︷︷ ︸

m−1 brackets

⊆ h.

Proof. For each 1 6 i 6 m− 1 and 1 6 j 6 m− i, define

αi;j , αi + αi+1 + · · ·+ αi+j−1.

According to the assumption, the αi;j’s are precisely all the nonzero roots one can build from
α1, · · · , αm−1 as integral linear combinations. It follows from the graded property (4.11) of
root spaces that

E(1) =

(
m−2∑
i=1

gαi;2

)
⊕ g−α1;m−2 ⊕ g−α2;m−2 ,

· · ·

E(k) =

(
m−1−k∑
i=1

gαi;k+1

)
⊕

(
k+1∑
j=1

g−αj;m−1−k

)
,

· · ·

E(m−2) = gα1+···+αm−1 ⊕

(
m−1∑
j=1

g−αj

)
.

Finally, by using property (4.11) again as well as the assumption of the lemma, we obtain

E(m−1) = [E(m−2), E] ⊆ g0 = h.

Lemma 4.19 tells us that, if we design F : V → g so that F (V ) ⊆ E, then under the
induced homomorphism on the free Lie algebra, Lm(V ) is mapped into the Cartan subalgebra
h.
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Figure 4.1: Root Systems of so(5,C) and g2

Example 4.20. Consider g = sl(m,C), with a Cartan subalgebra h given by the subspace
of diagonal matrices in g. In this case, it is easy to see that the simple roots αi = µi − µi+1

(1 6 i 6 m− 1) given by (4.12) satisfy the assumption of Lemma 4.19. In this case, we have

E =




0 z1 0
. . .

zm−1

zm 0

 : z1, · · · , zm ∈ C

 ,

where omitted entries in the matrix are all 0’s. Indeed, the semisimple Lie algebra associated
with the root system generated by the roots given in Lemma 4.19 is isomorphic to sl(m,C).

Using root patterns, we give two other examples that are not isomorphic to sl(m,C) but
also allow one to map the highest degree Lie polynomials into a Cartan subalgebra. In each
example, the underlying Lie algebra is of rank two. The nonzero roots are drawn as planar
Euclidean vectors, in which integral linear combinations follow usual vector operation rules.
The corresponding conclusion is immediate by manipulating the root vectors based on the
graded property (4.11) and g0 = h. Although possible, there is no need to work with the
actual Lie algebra g and the associated root spaces at this level.

Example 4.21. Consider g = so(5,C), the Lie algebra of 5 × 5 complex skew-symmetric
matrices. The associated root system is given by the left hand side of Figure 4.1. If we
require F : V → E , gα ⊕ gβ ⊕ gγ, then L4(V ) is mapped into a Cartan subalgebra (cf.
Section 4.2.4 II below for more explicit calculations in degree m = 4 based on this structure).
The property can be generalized to higher degrees by considering so(n,C) with larger n.

Example 4.22. Consider g = g2, the smallest exceptional simple Lie algebra. It arises
from the classification of simple Lie algebras, and can be identified as the Lie algebra of the
subgroup of Spin(7) preserving a point on S7. The associated root system is given by the
right hand side of Figure 4.1. If we require F : V → E , gα⊕gβ⊕gγ, then L6(V ) is mapped
into a Cartan subalgebra.
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III. A consistency lemma for certain symmetric polynomial systems

Note that the homogeneous Lie polynomial lm ∈ Lm(V ) has the general form lm = c1h1 +
· · ·+ cνhν , where {h1, · · · , hν} is a given basis of Lm(V ). In order to produce a lower bound
on Lm(X) in the form of Theorem 2.13, with a factor independent of the coefficients ci’ s,
a natural idea is to require each hi to have the right eigenvalue individually. In this way,
properties of Cartan subalgebra will guarantee that lm has a desired eigenvalue ‖lm‖ and
the operator norm of the Lie algebraic development will depend only on the roughness m
but not on the coefficients ci. This viewpoint leads us to the consideration of certain type
of polynomial systems. A consistency lemma for these systems, stated as follows, will be
needed for the proof of our main lower estimate. The lemma may also be of independent
interest.

Lemma 4.23. Let p1, · · · , pν be homogeneous polynomials over Cn of the same degree. Sup-
pose that they are linearly independent. Then for any k > 4ν−1ν! and c1, · · · , cν ∈ C, the
polynomial system 

p1(z1) + · · ·+ p1(zk) = c1,

· · ·
pν(z1) + · · ·+ pν(zk) = cν

has at least one solution in Ckn, where z1, · · · , zk are independent variables each having
dimension n.

Remark 4.24. Lemma 4.23 is not as obvious as one may expect and the special structure of
the system has to play an essential role. In general, a polynomial system in which the number
of variables is greater than the number of equations may not always possess a solution, even
when assuming that the underlying polynomials are algebraically independent. For instance,
the system

x2y = 0, xyz = 1

does not have a solution! The precise level of independence is given by the renowned Hilbert’s
nullstellensatz in algebraic geometry. It is to some extent surprising that linear independence
is sufficient for the assertion to hold in our case.

Proof of Lemma 4.23. 1We are going to prove the claim that there exists k > 1 such that
the system is consistent. It will be clear in the argument that k > 4ν−1ν!. For this purpose,
we treat the claim as a property depending on ν (the number of polynomials involved) and
prove it by induction. When ν = 1, since p1 6= 0 we know that p1(z) 6= 0 for some z ∈ Cn.
Since p1 is homogeneous, it follows from scaling that the image of p1 must be C. Therefore,
the assertion holds with k = 1.

Suppose that the assertion is true for ν polynomials, and assume that we are now given
ν + 1 linearly independent homogeneous polynomials p1, · · · , pν+1 of the same degree. By

1From the algebraic geometric viewpoint, it is not obvious how one can approach by using a general
dimension argument, since in the associated projective space one needs to rule out the possibility that the
underlying projective variety lies in the hyperplane at infinity. The proof we give here is entirely elementary.
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induction hypothesis, there exists k > 1, such that for any 1 6 i 6 ν + 1, the map p
(k)

î
:

Ckn → Cν defined by

p
(k)

î
(z1, · · · , zk) ,



p1(z1) + · · ·+ p1(zk)
...

pi−1(z1) + · · ·+ pi−1(zk)
pi+1(z1) + · · ·+ pi+1(zk)

...
pν+1(z1) + · · ·+ pν+1(zk)


is surjective. We claim that, for every 1 6 i 6 ν + 1, the following system{

pi(z1) + · · ·+ pi(z4k) 6= 0,

pj(z1) + · · ·+ pj(z4k) = 0, for all j 6= i,
(4.15)

must have a solution. Observe that if this is true, then the induction step finishes with
k′ = 4k(ν + 1). Indeed, let c1, · · · , cν+1 ∈ C. For each i, by homogenuity and scaling, the
consistency of the system (4.15) implies the consistency of the system

p1(z1) + · · ·+ p1(z4k) = 0,

· · ·
pi(z1) + · · ·+ pi(z4k) = ci,

· · ·
pν+1(z1) + · · ·+ pν+1(z4k) = 0.

Let Z(i) ∈ C4kn be a solution to the above system. By adding up the ν + 1 cases, we know
that the system 

p1(z1) + · · ·+ p1(z4k(ν+1)) = c1,

· · ·
pν+1(z1) + · · ·+ pν+1(z4k(ν+1)) = cν+1,

has a solution given by Z = (Z(1), · · · ,Z(ν+1)) ∈ C4kn(ν+1). In other words, the assertion
holds with k′ = 4k(ν + 1).

Now it remains to show the consistency of the system (4.15). Suppose on the contrary
that the system is inconsistent for some i. Without loss of generality, we may assume that
i = 1. We first introduce some notation to simplify the presentation. It is convenient to call

Z = (z1, · · · , zk), Z′ = (zk+1, · · · , z2k)

and
W = (z2k+1, · · · , z3k), W

′ = (z3k+1, · · · , z4k).

We also define
Pi(Z) = pi(z1) + · · ·+ pi(zk)
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and similarly for the other parts of the variables. In particular, we have

pi(z1) + · · ·+ pi(z4k) = Pi(Z) + Pi(Z
′) + Pi(W) + Pi(W

′).

Under the above notation and assumption, we know that P1(Z) +P1(Z′) +P1(W) +P1(W′)
vanishes identically on the algebraic variety

V , {(Z,Z′,W,W′) : Pi(Z) + Pi(Z
′) + Pi(W) + Pi(W

′) = 0 for 2 6 i 6 ν + 1}

defined by the remaining polynomials.
We claim that, there exists a function F : Cν → C, such that

P1(W) + P1(W′) = F (P2(W) + P2(W′), · · · , Pν+1(W) + Pν+1(W′)) (4.16)

for all (W,W′) ∈ C2kn. Indeed, define Ξ : C2kn → Cν by

Ξ(W,W′) , (P2(W) + P2(W′), . . . , Pν+1(W) + Pν+1(W′)).

By the induction hypothesis, we know that Ξ is surjective. We then define F : Cν → C by

F (ξ) , P1(W) + P1(W′),

where (W,W′) is any element such that ξ = Ξ(W,W′). To verify that F is well defined,
suppose that ξ = Ξ(W,W′) = Ξ(W̃,W̃′). Then

Pj(W) + Pj(W
′) = Pj(W̃) + Pj(W̃

′), for all 2 6 j 6 ν + 1.

Let
(Z,Z′) , (−1)1/m · (W,W′),

where m is the degree of the underlying polynomials. It follows that both of (Z,Z′,W,W′)
and (Z,Z′,W̃,W̃′) are elements in V , and thus they are both zeros of the polynomial at
i = 1. In particular, we have

P1(W) + P1(W′) = P1(W̃) + P1(W̃′),

showing that F is well defined.
By taking W′ = 0 in (4.16), we arrive at

P1(W) = F (P2(W), · · ·Pν+1(W)).

Now the key observation is that, F must be linear. Indeed, given λ ∈ C, we have

λF (P2(W), · · · , Pν+1(W))

= λP1(W)

= P1(λ1/mW)

= F
(
P2(λ1/mW), · · · , Pν+1(λ1/mW)

)
= F (λP2(W), · · · , λP2(W)) .
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In addition, let ξ, η ∈ Cν . Again by induction hypothesis, there exist W and W′ in Ckn,
such that

ξ = (P2(W), · · · , Pν+1(W)) , η = (P2(W′), · · · , Pν+1(W′)) .

It follows that

F (ξ + η) = F (P2(W) + P2(W′), · · · , Pν+1(W) + Pν+1(W′))

= P1(W) + P1(W′)

= F (ξ) + F (η).

Therefore, F is linear. This leads to a contradiction with the linear independence among
P1, · · · , Pν+1. Consequently, the system (4.15) is consistent, finishing the proof of the induc-
tion step.

IV. Establishing the main lower estimate

Using the representation theory of sl(n;C) and Lemma 4.23, we can now establish our main
lower estimate for the signature tail asymptotics of pure rough paths. The result contains
two parts, a general lower estimate involving a multiplicative factor c(m, d), and an explicit
further lower estimate on this factor. We state and prove them separately.

First of all, our general lower bound is stated as follows. The proof is based on designing
appropriate Lie algebraic developments.

Theorem 4.25. Let V be a d-dimensional Banach space and let every tensor product V ⊗n be
equipped with the associated projective tensor norm. For each m > 1, there exists a constant
c(m, d) ∈ (0, 1] depending only on m and d, such that

Lm(X) > c(m, d)‖πm(l)‖

for all pure m-rough paths Xt = exp(tl) ∈ G(m)(V ) over V.

Proof. We write the highest degree component of l in the form lm = c1h1 + · · ·+ cνhν , where
{h1, · · · , hν} is a given basis of Lm(V ). Using the dual characterization (2.1) of the projec-
tive tensor norm, let B be a given m-linear functional over V whose norm is bounded by 1.
We aim at constructing a Lie algebraic development Φ : V → g→ End(W ) such that:

(i) g is semisimple, and the space Lm(V ) is mapped into a Cartan subalgebra h of g under
the Lie homomorphism induced by F ;
(ii) there exists a weight µ ∈ h∗ for ρ such that µ(F (lm)) = B(lm);
(iii) the operator norm of Φ is bounded above by a constant which is independent of B and
the specific values of the coefficients ci.

If this can be achieved, the general lower bound will follow from (4.13) and (2.1) since
B is arbitrary.
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One way of constructing such a development is the following. For simplicity we assume
that dimV = 2 with a given basis {e1, e2} (there is only notational difference in higher
dimensions). We choose g = sl(k ·m,C) where k > 1 is a large number to be specified later
on. We choose a Cartan subalgebra h and a base of simple roots according to the discussion
in Part I of the current section. Define the embedding F : V → g in the following block
diagonal form

F (e1) =


A1 0

A2

. . .
0 Ak


km×km

, F (e2) =


B1 0

B2

. . .
0 Bk


km×km

,

where each Ai, Bj ∈ sl(m,C) (1 6 i, j 6 k) has the form

Ai =


0 ai,1 0

. . .
ai,m−1

ai,m 0


m×m

, Bj =


0 bj,1 0

. . .
bj,m−1

bj,m 0


m×m

,

with all the ai,r, bj,s’s being complex parameters to be specified later on. There are totally
2km independent variables to determine F . According to Lemma 4.19 and Example 4.20,
under the induced homomorphism (still denoted as F ) on the free Lie algebra, Lm(V ) is
mapped into the given Cartan subalgebra h.

Finally, we choose ρ : g → End(W ) to be the irreducible representation of g associated
with the k-th fundamental dominant integral functional λk according to Theorem 4.16, and
more explicitly by Theorem 4.17 in the sl(n,C) case, we have W = Λk(Ckm) and ρ being the
k-th exterior power of the canonical matrix representation. According to the same theorem,
a weight for this representation is given by

µ = µ1 + µm+1 + µ2m+1 + · · ·+ µ(k−1)m+1 ∈ h∗,

where recall that µi is the linear functional of taking the i-th diagonal entry.
To specify the parameters in order to fulfil the eigenvalue condition (ii) while respecting

the uniformity condition (iii), we are led to setting up a system of equations:

µ(F (hi)) = B(hi), 1 6 i 6 ν.

This is a polynomial system with ν equations and 2km independent complex variables. It
has the form 

p1(A1, B1) + · · ·+ p1(Ak, Bk) = B(h1),

· · ·
pν(A1, B1) + · · ·+ pν(Ak, Bk) = B(hν),

(4.17)

where each pi is a homogeneous polynomial of degree m in 2m complex variables. More
precisely, pi(A,B) is the first entry of the diagonal polynomial matrix G(hi), where G is the
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homomorphism induced from the linear map V → sl(m,C[ai, bj]) given by

e1 7→ A ,


0 a1 0

. . .
am−1

am 0

 , e2 7→ B ,


0 b1 0

. . .
bm−1

bm 0

 .

It is important to view G as a homomorphism into the polynomial matrix algebra in 2m
complex variables.

We claim that, the polynomial system (4.17) has a solution in C2km for some large k > 1,
which according to Lemma 4.23, boils down to showing that the polynomials p1, · · · , pν ∈
C[ai, bj] are linearly independent. To this end, consider the linear map T : V ⊗m → C[ai, bj]
defined by

T (ei1 ⊗ · · · ⊗ eim) , (1, 1)-entry of G(ei1 ⊗ · · · ⊗ eim).

Explicit calculation then shows that

T (ei1 ⊗ · · · ⊗ eim) = wi1 · · ·wim , (4.18)

where wij = aj or bj according to whether ij = 1 or 2. In particular, we see that T is
injective. Since h1, · · · , hν is a basis of Lm(V ) ⊆ V ⊗m, we conclude that the polynomials

pi(A,B) = T (hi), 1 6 i 6 ν

are linearly independent. Therefore, by Lemma 4.23, the polynomial system (4.17) has a so-
lution for some large k. Any solution can be used to determine the Lie algebraic development
Φ = ρ ◦ F specified in the previously given form. Under such development, the eigenvalue
condition (ii) holds, and it follows from Theorem 4.10 that

Lm(X) >
B(lm)

‖Φ‖mV→End(W )

.

Now it remains to estimate the operator norm of Φ, which reduces to estimating a solution
to the polynomial system (4.17). For this purpose, according to Lemma 4.23, there exists
k > 1, such that for each 1 6 i 6 ν, the polynomial system{

pi(A1, B1) + · · ·+ pi(Ak, Bk) = 1,

pj(A1, B1) + · · ·+ pj(Ak, Bk) = 0, j 6= i,
(4.19)

has a solution Z(i) ∈ C2km. It follows that with Z̃(i) , B(hi)
1/mZ(i), the vector Z̃ ,

(Z̃(1), · · · , Z̃(ν)) ∈ C2kνm is a solution to the system (4.17) with k being enlarged to kν.
Since ‖B‖ 6 1, we see that Z̃, and thus the operator norm of Φ, is bounded above by a
constant depending only on the roughness m and the dimension d. Since B is arbitrary, this
implies the desired lower bound with a multiplicative factor c(m, d) depending only on m
and d.
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It is clear from the last paragraph of the previous proof that, the key to estimating
the multiplicative factor c(m, d) is an explicit estimate on a solution to the system (4.17).
In general, selecting solutions to a consistent polynomial system with a priori bounds is an
important topic in computational algebraic geometry that has been studied by many authors.
We state a result of Vorob’ev [29] that is relevant to us. Recall that the bitsize of a nonzero
integer n is the unique natural number τ such that 2τ−1 6 |n| < 2τ . The bitsize of a rational
number is the sum of the bitsizes of its numerator and denominator.

Lemma 4.26 (cf. [29], Theorem 3). Let V be the set of real solutions to a consistent system of
polynomial equations f1 = · · · = fν = 0 where each fi ∈ Q[x1, · · · , xn]. Let L be the maximum

of the bitsizes of the coefficients of the system, D ,
∑ν

i=1 deg fi and r ,
(
n+ 2D
n

)
. Then

there exists a point x = (x1, · · · , xn) ∈ V , such that

|xi| 6 2H(r,L) for all 1 6 i 6 n,

where H is some universal bivariate polynomial independent of the original system.

Remark 4.27. In Vorob’ev’s result (and other results of similar type), having rational or
sometimes integral coefficients is a crucial assumption. In addition, it presumes the consis-
tency of the system before locating an a priori bounded solution. In particular, it does not
provide a proof on whether the system admits a solution.

With the help of Vorob’ev’s estimate, we can now establish an explicit estimate on the
factor c(m, d) arising from Theorem 4.25.

Theorem 4.28. Keeping the same notation as in Theorem 4.25, the multiplicative factor
c(m, d) satisfies

c(m, d) > Λ−md · 2−(νm,d!)
γνm,d

,

where Λd is a constant depending only on d, νm,d , dimLm(V ), and γ > 1 is a universal
constant.

Proof. Essentially we just need to keep track of the quantities appearing in the proof of
Theorem 4.25 in a precise way.

First of all, in that proof we fix a basis {e1, · · · , ed} of V with norm 1, and assume
that {h1, · · · , hν} is a Hall basis of Lm(V ) built over the letters e1, · · · , ed. Next, in the
representation ρ : sl(k · m,C) → Λk(Ckm), we work with the l1-norm on Λk(Ckm) with
respect to the canonical exterior basis. In addition, according to Lemma 4.23 we choose
k = 4ν−1ν! for the system (4.19). Recall that Z(i) (respectively, Z̃) is a solution to the
system (4.19) (respectively, (4.17)). Now we presume that for each i, all components of Z(i)

are bounded by a number M . Using the observation that ‖hi‖ 6 2m, we know that all
components of Z̃ are bounded by 2M . It then follows from a simple unwinding of definitions
that

‖Φ‖V→End(W ) 6 2ΛdkM, (4.20)
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where Λd is the constant depending only on d which arises from the comparison between
the given norm ‖ · ‖V on V and the l1-norm ‖ · ‖1 with respect to the basis {e1, · · · , ed}, i.e.
‖ · ‖1 6 Λd‖ · ‖V .

It remains to work out M explicitly. The first observation is that, the system (4.19) has
integral coefficients each being bounded by 2m. To apply Vorob’ev’s estimate, we need to
turn the system into an equivalent system over real variables, which can be done by viewing
each complex variable as a pair of real variables. In this way, (4.19) becomes a system with
2ν equations and 2kdm real variables. The next observation is that, the new system again
has integer coefficients, and more importantly when transforming from complex to real, the
coefficients are not enlarged. This is due to the fact that the polynomial pi is linear with
respect to every single complex variable when the others are frozen (cf. (4.18) for the shape
of relevant monomials). Therefore, using the notation in Lemma 4.26, we find that

L 6 m, D = 2mν, n =
1

2
dm4νν!, r =

(
n+ 2D
n

)
.

It follows from Stirling’s approximation and Vorob’ev’s estimate that M 6 2(ν!)κν with some
universal constant κ > 1 independent of the system. Now the result follows by substituting
this into (4.20) and using Theorem 4.25.

Remark 4.29. The proof of Theorem 4.25 does not provide the optimal way of constructing
the Lie algebraic development Φ in general, and the explicit lower bound given by Theorem
4.28 does not seem to be optimal either. To improve the estimate, among the class of
Lie algebraic developments Φ in which ‖πm(l)‖ is an eigenvalue of Φ(πm(l)), one needs to
minimize the operator norm of Φ. As we will see in low degree cases, there are plenty of
rooms for reducing the operator norm of Φ and hence improving the factor c(m, d). The
sharp lower bound (Conjecture 2.12) will hold if one can achieve ‖Φ‖V→End(W ) = 1.

As an immediate corollary of our methodology, we prove the following separation of points
property for signatures. Such a separation property was first obtained by Chevyrev-Lyons
[7] as an essential ingredient of proving their uniqueness result for the expected signature of
stochastic processes.

Corollary 4.30. Let V be a finite dimensional vector space.

(1) Let l, l′ ∈ L(V ) be two distinct Lie polynomials over V . Then there exists a finite
dimensional complex semisimple Lie algebra g and a linear embedding F : V → g, such that
F (l) 6= F (l′).
(2) Let g1, g2 be the signatures of two weakly geometric rough paths over V . Suppose that
g1 6= g2. Then there exists a finite dimensional complex semisimple Lie algebra g and a linear
embedding F : V → g, such that F (g1) 6= F (g2).

Proof. (1) Let m > 1 be the smallest integer such that πm(l) 6= πm(l′). According to the
proof of Theorem 4.25, there exists a finite dimensional Lie algebraic development

Φ : V
F−→ g

ρ−→ End(W )
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such that
Φ(πm(l)) 6= Φ(πm(l′)).

More specifically, we have g = sl(k · m,C) and W = Λk(Ckm) with k = 4ν−1ν! and ν =
dimLm(V ). For given ε > 0, define Φε , ρ ◦ (ε · F ). It follows that

Φε(l − l′) = (ρ ◦ (ε · F ))(l − l′)

= ρ

(
εm · F (πm(l − l′)) +

∑
n>m

εn · F (πn(l − l′))

)
= εm · Φ(πm(l − l′)) +

∑
n>m

εn · Φ(πn(l − l′)).

Note that the summation is indeed finite since l, l′ are Lie polynomials. Therefore, we see
that

Φε(l − l′) = εm · Φ(πm(l − l′)) + o(εm),

which implies that Φε(l− l′) 6= 0 when ε is small. The embedding ε ·F will satisfy the desired
property.

(2) Write g = exp(l) and g′ = exp(l′) where l, l′ are Lie series respectively. In the same
way as the proof of the first part, let m > 1 be the smallest integer such that πm(l) 6= πm(l′),
and choose a finite dimensional Lie algebraic development Φ = ρ ◦ F : V → g → End(W )
separating πm(l) and πm(l′). Since g and g′ are path signatures, it is known that (cf. [23] and
[6]), l and l′ both have positive radius of convergence when viewed as formal tensor series.
In particular, both of

ε 7→ Φε(l), ε 7→ Φε(l
′)

are analytic functions in some neighbourhood of ε = 0 where Φε , ρ ◦ (ε ·F ). Therefore, we
see that

Φε(l) = εm · Φ(πm(l)) + o(εm), Φε(l
′) = εm · Φ(πm(l′)) + o(εm),

when ε is small. Note that we also have

Φε(g) = exp (Φε(l)) , Φε(g
′) = exp (Φε(l

′)) .

Since the exponential map for the group Aut(W ) is a local diffeomorphism at the identity,
we conclude that Φε(g) 6= Φε(g

′) when ε is small. In particular, the embedding ε · F will
satisfy the desired property.

Remark 4.31. Apart from the sl(n;C) structure, the above argument can be extended to
other types of semisimple Lie algebras (possibly of compact type) for instance over so(n;C),
as long as the development is chosen so that the highest degree Lie component is mapped
into a Cartan subalgebra (cf. Example 4.21). In [7], the separation property was proved
using the (semi)simple Lie algebra sp(n).
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Remark 4.32. One advantage of stating the separation property at the level of free Lie algebra
(Part (1) of the corollary) is that the property becomes purely algebraic. Even at the level
of signature, the dependence on analytic properties is rather mild. Indeed, the proof of the
positive radius of convergence for the logarithmic signature given in [6] requires only the
faster-than-geometric decay for signature components. This is the only analytic condition
needed here.

4.2.4 Explicit calculations in low degrees

We perform some more explicit calculations in low degrees to illustrate the methodology
better. We consider V = R2 equipped with the l1-norm with respect to the standard basis
{e1, e2}. The associated projective tensor norm then coincides with the l1-norm with respect
to the canonical tensor basis. In this context, we are going to show that, the sharp lower
bound holds in degrees m = 2, 3 and some cases in degrees m = 4, 5. When m = 4, we have
c(4, 2) > 5/32 in general.

I. Sharp lower bound in degrees 2 and 3

Let Xt = exp(tl) be a pure 2-rough path, and write π2(l) = c[e1, e2] ∈ L2(V ). In order
to develop L2(V ) into a Cartan subalgebra, according to Lemma 4.19 and Example 4.20, we
choose g = sl(2,C), and define F : V → g by

F (e1) =

(
0 a1

a2 0

)
, F (e2) =

(
0 b1

b2 0

)
,

where a1, a2, b1, b2 are parameters to be specified. In addition, we choose ρ : g → End(C2)
to be the canonical matrix representation, where C2 is equipped with the standard l1-norm.

Note that
F ([e1, e2]) =

(
a1b2 − a2b1 0

0 a2b1 − a1b2

)
∈ h.

Since ‖π2(l)‖ = 2|c|, we set up the equation

a1b2 − a2b1 = +2 or − 2, (4.21)

depending on whether c is positive or negative. This will allow us to produce ‖π2(l)‖ as an
eigenvalue of Φ(π2(l)) ∈ End(C2). Among all solutions, the minimum ‖Φ‖R2→End(C2) = 1 is
obtained at

a1 = a2 = 1, b1 = ∓1, b2 = ±1,

where the signs are chosen depending on whether c is positive or negative. According to
Theorem 4.1 and Theorem 4.10, we conclude that L2(X) = ‖π2(l)‖ and thus Conjecture 2.12
holds for roughness m = 2.

Next we consider the case when l ∈ L(3)(V ). In this case, π3(l) ∈ L3(V ) takes the form

π3(l) = c1[e1, [e1, e2]] + c2[[e1, e2], e2].
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To develop L3(V ) into a Cartan subalgebra, we choose g = sl(3,C), define F : V → g by

F (e1) =

 0 a1 0
0 0 a2

a3 0 0

 , F (e2) =

 0 b1 0
0 0 b2

b3 0 0


where ai, bj’s are parameters to be determined, and choose ρ : g → End(C3) to be the
canonical matrix representation where C3 is equipped with the standard l1-norm.

Suppose that c1, c2 > 0, under which we have ‖π3(l)‖ = 4c1 + 4c2. To match the eigen-
values, we set up a system of equations

µ1(F ([e1, [e1, e2]])) = 4, µ1(F ([[e1, e2], e2])) = 4,

where recall that µ1 is a weight for ρ defined by taking the first diagonal entry. By direct
calculation, the system reads{

a1a2b3 + a2a3b1 − 2a1a3b2 = 4,

a1b2b3 − 2a2b1b3 + a3b1b2 = 4.

Among all its solutions, the minimum ‖Φ‖R2→End(C3) = 1 is achieved at

a1 = a2 = 1, a3 = −1, b1 = −1, b2 = b3 = 1.

The cases for other sign conditions on c1, c2 are treated similarly. Therefore, Conjecture 2.12
holds for roughness m = 3.

II. The degree 4 case

Now consider l ∈ L(4)(V ) with π4(l) = c1h1 + c2h2 + c3h3, where

h1 = [[e1, [e1, e2]], e1], h2 = [[[e1, e2], e2], e2], h3 = [e1, [[e1, e2], e2]]

form a Hall basis of L4(V ). In this case, we demonstrate the possibility of using other root
systems that are not isomorphic to sl(n,C), and show that

L4(X) >

{
5
32
‖π4(l)‖, c1 · c2 > 0,

√
7

8
‖π4(l)‖, c1 · c2 < 0.

(4.22)

To be precise, we choose g = so(5,C) and develop L4(V ) into a Cartan subalgebra
according to Example 4.21. A Cartan subalgebra h is generated by the two elements

H1 =


0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , H2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

 .
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The generators of the three root spaces gα, gβ, gγ corresponding to the specified roots α, β, γ
in that example can be chosen as

Xα =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 i
0 0 −1 −i 0

 ,

Xβ =


0 0 −1 i 0
0 0 i 1 0
1 −i 0 0 0
−i −1 0 0 0
0 0 0 0 0

 , Xγ =


0 0 −1 i 0
0 0 −i −1 0
1 i 0 0 0
−i 1 0 0 0
0 0 0 0 0


respectively. We refer the reader to [17], Chapter III, Section 8 for an explicit description
of the root space decomposition of g, from which one will see how the above matrices arise
naturally.

Now we define F : V → g by

F (e1) = a1Xα + a2Xβ + a3Xγ, F (e2) = b1Xα + b2Xβ + b3Xγ,

where ai, bj’s are parameters to be chosen. According to Example 4.21, we have F (L4(V )) ⊆
h. We choose ρ : g → C5 to be the canonical matrix representation, where C5 is equipped
with the standard Hermitian norm. A common eigenbasis of C5 for all elements in h under
ρ is given by

w1 = ε5, w2 = iε1 + ε2, w3 = −iε1 + ε2, w4 = iε3 + ε4, w5 = −iε3 + ε4,

where {ε1, · · · , ε5} is the canonical basis of C5. For H = xH1+yH2 ∈ h, the set of eigenvalues
of ρ(H) with respect to the above eigenbasis (listed in the same order) is {0,−ix, ix,−iy, iy}.
Denote µ as the weight defined by H = xH1 + yH2 7→ iy, the eigenvalue with respect to the
common eigenvector w5.

Suppose that c1, c2, c3 > 0, under which we have ‖π4(l)‖ = 8c1 + 8c2 + 6c3. We then set
up a polynomial system

µ(F (h1)) = 8, µ(F (h2)) = 8, µ(F (h3)) = 6. (4.23)

The left hand side consists of homogeneous polynomials of degree 4 in six variables ai, bj.
To simplify computation, we restrict ourselves to solutions satisfying a2 = a3, b2 = b3. Under
this constraint, by explicit calculation it is seen that ±µ(F (hi)) become the only possibly
nonzero eigenvalues of Φ(hi) (i = 1, 2, 3), and the system (4.23) reads

4a1a3(a1b3 − a3b1) = 1,

4b1b3(a1b3 − a3b1) = −1,

8(a2
1b

2
3 − a2

3b
2
1) = 3.
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Treating a1 as a free variable, the above system can be solved explicitly to yield precisely
four scenarios: 

a3 = ±
√

10
10a1

,

b1 = −a1
2
,

b3 = ±
√

10
5a1

,

,


a3 = ±

√
10i

10a1
,

b1 = 2a1,

b3 = ∓
√

10
20a1

.

In other words, the solution set Σ ⊆ C4 has complex dimension one and consists of four
irreducible components Σ1,Σ2,Σ3,Σ4, each being globally parametrized by a1 ∈ C\{0}.

Finally, we try to minimize the operator norm of Φ over Σ. To this end, first recall
that given an n × n complex matrix A, when viewed as a linear transformation over Cn,
the operator norm of A with respect to the standard Hermitian norm on Cn coincides with
the maximal singular value of A. By direct calculation, on the component Σ1, the sets of
singular values of Φ(e1), Φ(e2) ∈ End(C5) are{

0,
√

2|a1|,
2
√

5

5|a1|

}
,

{
0,
|a1|√

2
,

4
√

5

5|a1|

}

respectively. Therefore, we have

‖Φ‖R2→End(C5) = max {‖Φ(e1)‖C5→C5 , ‖Φ(e2)‖C5→C5} = max

{
√

2|a1|,
4
√

5

5|a1|

}
.

It is now elementary to see that the minimum of ‖Φ‖R2→End(C5) over Σ1 is achieved at
|a1| = 2 · 10−1/4, and the minimum equals 2

√
2 · 10−1/4. Similar calculation over the other

three components of Σ yields exactly the same minimum. Therefore, we conclude that

inf
Σ
‖Φ‖R2→End(C5) = 2

√
2 · 10−1/4,

and the infimum is achieved at a Lie algebraic development determined by, for instance,

a1 = 2 · 10−1/4, a2 = a3 =
1

2
· 10−1/4, b1 = −10−1/4, b2 = b3 = 10−1/4.

Under this development, we have the lower bound

L4(X) >
8c1 + 8c2 + 6c3

‖Φ‖4
R2→End(C5)

=
5

32
‖π4(l)‖.

The discussion for other sign conditions on the coefficients c1, c2, c3 is entirely analogous
by adjusting the signs on the right hand side of the system (4.23) accordingly. This eventually
leads us to precisely two scenarios of the desired lower bound (4.22). We omit the lengthy
and repeating calculations.

On the other hand, if one of the coefficients c1, c2, c3 is zero, the lower bound can be
improved further, since one equation from the system (4.23) is removed which produces a
higher dimensional solution set. Indeed, when c3 = 0, one obtains the sharp lower bound
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and hence Conjecture 2.12 holds for this case. A simple choice of Lie algebraic developments
achieving the sharp lower bound is the following. Choose g to be sl(4,C), the representation
ρ to be the canonical matrix representation, and the embedding F : V → g to be given by

e1 7→ A ,


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

 , e2 7→ B ,


0 1 0 0
0 0 −1 0
0 0 0 1
1 0 0 0


if c1 · c2 > 0, and

e1 7→ e
5πi
8 · A, e2 7→ e

πi
8 ·B

if c1 · c2 < 0, respectively. The same conclusion is true in degree 5 when π5(l) consists of a
single Hall polynomial. We again omit the similar type of calculations.

5 The Hilbert-Schmidt tensor norm: proof of Theorem
3.1

As we mentioned earlier (cf. Theorem 3.1), Conjecture 2.12 can be proved for a special class
of pure rough paths if we work with the Hilbert-Schmidt tensor norm instead. Here we give
an independent proof of this result.

Let V = Rd be equipped with the l2-metric with respect to the standard basis {e1, · · · , ed}.
We equip each V ⊗m with the l2-metric with respect to the standard tensor basis. They ex-
tend to an inner product structure 〈·, ·〉 on the subalgebra T (V ) of T ((V )) consisting of
finite tensors by requiring that V ⊗m and V ⊗n are orthogonal if m 6= n. By considering basis
elements and using bilinearity, it is immediate that

〈ξm ⊗ ξn, ηm ⊗ ηn〉 = 〈ξm, ηm〉 · 〈ξn, ηn〉

for all ξm, ηm ∈ V ⊗m and ξn, ηn ∈ V ⊗n.
Recall from the assumption that Xt = exp(t(la + lb)) ∈ G(b)(V ), where a < b and la, lb

are homogeneous Lie polynomials of degrees a, b respectively. Suppose that (b−a)/gcd(a, b)
is an odd integer. We aim at showing that Lb(X) = ‖lb‖.

For each k > 1, we write

πbk (exp(la + lb)) =
l⊗kb
k!

+Q, (5.1)

where the exponential is now taken over T ((V )), and Q is sum of all remaining terms in
the expansion. The key step is to show that, if (b − a)/gcd(a, b) is odd, then l⊗kb and Q
are orthogonal for all large k. This can be proved by making use of an anti-automorphism
on the tensor algebra together with symmetry properties of the signature expansion. The
orthogonality property clearly leads to the lower estimate

‖πbk(exp(la + lb))‖ >
‖lb‖k

k!
.
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Combining with the general upper estimate given by Theorem 4.1, the result then follows.
To prove (5.1), first consider the linear map α : T (V )→ T (V ) induced by

α(ei1 ⊗ · · · ⊗ eim) = (−1)meim ⊗ · · · ⊗ ei1 .

By definition, α is an anti-involution, i.e. α(ξ ⊗ η) = α(η)⊗ α(ξ) and α2 = Id. In addition,
for any ξ, η ∈ T (V ), we have 〈α(ξ), α(η)〉 = 〈ξ, η〉. A crucial property of α is that α(l) = −l
for any Lie polynomial l. The notion of α and the above properties can be found in [27],
Chapter 1. An immediate consequence of using the anti-involution α is the following lemma.
Recall that the symmetrized product of ξ1, · · · , ξn ∈ T (V ) is defined by

Sym(ξ1, · · · , ξn) ,
1

n!

∑
σ∈Sn

ξσ(1) ⊗ · · · ⊗ ξσ(n),

where Sn is the permutation group of order n. For convenience, we also define the reduced
symmetrized product

RSym(ξ1, · · · , ξ1︸ ︷︷ ︸
k1 times

, · · · , ξn, · · · , ξn︸ ︷︷ ︸
kn times

) ,
1

k1! · · · kn!
Sym(ξ1, · · · , ξ1︸ ︷︷ ︸

k1 times

, · · · , ξn, · · · , ξn︸ ︷︷ ︸
kn times

).

Lemma 5.1. Let l0, l1, · · · , ln be Lie polynomials and k > 1. If k+n is an odd integer, then

〈l⊗k0 , Sym(l1, · · · , ln)〉 = 0.

The same result holds for the reduced symmetrized product.

Proof. Observe that

α (Sym(l1, · · · , ln)) = (−1)nSym(l1, · · · , ln).

Therefore, we have

〈l⊗k0 , Sym(l1, · · · , ln)〉 = 〈α(l⊗k0 ), α(Sym(l1, · · · , ln))〉
= (−1)k+n〈l⊗k0 , Sym(l1, · · · , ln)〉.

The first assertion follows since k+n is odd by assumption. The second assertion is obvious.

Now we are in a position to give the proof of Theorem 3.1.

Proof of Theorem 3.1. We express the remainder Q in the expression (5.1) in a more explicit
way:

Q =
∑

x>0, ax+by=bk

RSym(la, · · · , la︸ ︷︷ ︸
x times

, lb, · · · , lb︸ ︷︷ ︸
y times

). (5.2)

An important observation is that, for each summand, since ax+ by = bk, we have

a

r
x =

b

r
(k − y)

41



where r , gcd(a, b), showing that b/r | x and thus x > b/r. For the equation to make sense,
one also needs k > a/r.

Firstly, if x = b/r, then y = k − a/r. In this case, we have

k + x+ y = 2k +
b− a
r

,

which is an odd integer by assumption. According to Lemma 5.1, we conclude that

〈l⊗kb ,RSym(la, · · · , la︸ ︷︷ ︸
x times

, lb, · · · , lb︸ ︷︷ ︸
y times

)〉 = 0. (5.3)

Next, consider a given x > b/r from the sum in (5.2). For each single term ξ in the
corresponding reduced symmetrized product, ξ can be uniquely written as ξ = ξ1⊗ξ2, where
ξ1 contains exactly b/r number of la’s and ξ2 starts with la. Let S be the set of all such
ξ2’s arising in this way. Denote y(ξ2) as the number of lb’s in each given ξ2 ∈ S. Then the
reduced symmetrized product can further be written as

RSym(la, · · · , la︸ ︷︷ ︸
x times

, lb, · · · , lb︸ ︷︷ ︸
y times

)

=
∑
ξ2∈S

(
b

r
+ y − y(ξ2)!

)
· RSym(la, · · · , la︸ ︷︷ ︸

b/r times

, lb, · · · , lb︸ ︷︷ ︸
y−y(ξ2) times

)⊗ ξ2.

For each ξ2 ∈ S, by writing k1 , a/r + y − y(ξ2), Lemma 5.1 again implies that

〈l⊗k1b ,RSym(la, · · · , la︸ ︷︷ ︸
b/r times

, lb, · · · , lb︸ ︷︷ ︸
y−y(ξ2) times

)〉 · 〈l⊗(k−k1)
b , ξ2〉 = 0,

since
k1 +

b

r
+ y − y(ξ2) = 2k1 +

b− a
r

is an odd integer. Therefore, (5.3) holds for the reduced symmetrized product corresponding
to the given x.

It follows that l⊗kb is orthogonal to Q provided k > a/r, and the proof of the theorem is
now complete.
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Appendix A Some properties of pure rough paths

In this section, we prove the two properties of pure rough paths stated in Proposition 2.10
and Proposition 2.11 respectively in Section 2.3.

Proof of Proposition 2.10. Let Xt = exp(tl) (0 6 t 6 1) be a pure m-rough path, where
l ∈ L(m)(V ) with lm , πm(l) 6= 0. For each 1 6 k 6 m, the degree k component of
Xs,t , X−1

s ⊗Xt has the form

Xk
s,t =

m∑
r=0

(t− s)r

r!
πk(l

⊗r) =
k∑
r=1

(t− s)rξ(k)
r ,

where ξ(k)
r ∈ V ⊗k are tensors constructed from π1(l), · · · , πm(l). It follows that

‖Xk
s,t‖ 6

k∑
r=1

|t− s|r‖ξ(k)
r ‖ 6 CX · |t− s|, (A.1)

where CX denotes a constant depending only on X. This implies that X is an m-rough path
in the sense of Definition 2.2.

Now if k < m, from (A.1) we have

‖Xk
s,t‖

m
k 6 C

m
k
X · |t− s|

m
k ,

showing that
lim

mesh(P)→0

∑
ti∈P

‖Xk
ti−1,ti

‖
m
k = 0.

If k = m, notice that ξ(m)
1 = lm. Therefore, given a finite partition P of [0, 1], we have

‖Xm
ti−1,ti

‖ = (ti − ti−1) ·
∥∥∥lm + (ti − ti−1)ξ

(m)
2 + · · ·+ (ti − ti−1)m−1ξ(m)

m

∥∥∥ .
It is now elementary to see that

lim
mesh(P)→0

∑
ti∈P

‖Xm
ti−1,ti

‖ = ‖lm‖.

Consequently, we conclude that the local m-variation of X equals ‖lm‖.

Remark A.1. This property apparently extends to the non-geometric setting, i.e. for the
case when l ∈ T (m)(V ). Indeed, even more holds true with essentially the same proof. Let
Xt = exp(L(t)) ∈ T (m)(V ), where L(t) is a bounded variation path in T (m)(V ). Then

lim
δ→0

m∑
k=1

(
inf

mesh(P)6δ

∑
ti∈P

‖Xk
ti−1,ti

‖
m
k

) k
m

= ‖πm(L)‖1-var.
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Proof of Proposition 2.11. Let Xt = exp(tl) ∈ G(m)(V ) be a pure m-rough path. For any
n > m, it is not hard to see that the multiplicative functional X(n)

s,t , exp((t−s)l) ∈ T (n)(V )

has finite total m-variation, where the exponential is taken over T (n)(V ). Therefore, X(n) is
the unique extension of X to T (n)(V ) given by Theorem 2.5. By the definition of signature,
exp(l) is the signature of X where the exponential is now taken over T ((V )). The second
part of the proposition is a direct consequence of the uniqueness result for signature in [2].
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